1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
import pika
import json
from flask import Flask, request, jsonify
from flask_cors import CORS
import boto3
import tempfile
import os
import base64
import cv2
import numpy as np
app = Flask(__name__)
CORS(app)
s3 = boto3.client('s3')
BUCKET_NAME_ORIGINAL = "original-images-allowing-griffon"
BUCKET_NAME_PROCESSED = "processed-images-allowing-griffon"
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'png', 'jpg', 'jpeg'}
def split_image(image_data, num_parts):
img = cv2.imdecode(np.frombuffer(image_data, np.uint8), cv2.IMREAD_COLOR)
height, width, _ = img.shape
part_height = height // num_parts
parts = []
for i in range(num_parts):
part_img = img[i * part_height: (i + 1) * part_height if i != num_parts - 1 else height, :, :]
_, buffer = cv2.imencode('.png', part_img)
part_data = buffer.tobytes()
parts.append(part_data)
return parts, width, height, part_height
def publish_task(part_data, filename, part_num, operation, callback_queue):
connection = pika.BlockingConnection(pika.ConnectionParameters('<rabbit-mq-server-public-ip'))
channel = connection.channel()
channel.queue_declare(queue='image_tasks')
task = {
'part_data': base64.b64encode(part_data).decode('utf-8'),
'filename': filename,
'part_num': part_num,
'operation': operation,
'callback_queue': callback_queue
}
channel.basic_publish(exchange='', routing_key='image_tasks', body=json.dumps(task))
connection.close()
print(f"Published task for part {part_num}")
def merge_parts(filename, num_parts, width, height, part_height):
merged_img = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(num_parts):
part_key = f"{filename}_part_{i}"
part_obj = s3.get_object(Bucket=BUCKET_NAME_PROCESSED, Key=part_key)
part_data = part_obj['Body'].read()
part_img = cv2.imdecode(np.frombuffer(part_data, np.uint8), cv2.IMREAD_COLOR)
if part_img is None:
print(f"Failed to decode part {i}")
continue
start_row = i * part_height
end_row = (i + 1) * part_height if i != num_parts - 1 else height
merged_img[start_row:end_row, :, :] = part_img
merged_filename = f"processed_{filename}"
_, buffer = cv2.imencode('.jpg', merged_img)
merged_data = buffer.tobytes()
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(merged_data)
temp_file.seek(0) # Ensure the file pointer is at the beginning
s3.put_object(Bucket=BUCKET_NAME_PROCESSED, Key=merged_filename, Body=temp_file.read(), ContentType="image/jpg")
os.remove(temp_file.name)
return merged_filename
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({'status': 'ok'}), 200
@app.route('/upload', methods=['POST'])
def upload_file():
if 'image' not in request.files:
return jsonify({'error': 'No file provided'}), 400
file = request.files['image']
operation = request.form.get('operation', 'edge_detection')
num_parts = int(request.form.get('num_parts', 8)) # Default to 4 parts
if file and allowed_file(file.filename):
temp_file = tempfile.NamedTemporaryFile(delete=False)
file.save(temp_file.name)
with open(temp_file.name, "rb") as img_data:
s3.put_object(Bucket=BUCKET_NAME_ORIGINAL, Key=file.filename, Body=img_data, ContentType="image/png")
original_img_obj = s3.get_object(Bucket=BUCKET_NAME_ORIGINAL, Key=file.filename)
original_img_data = original_img_obj['Body'].read()
parts, width, height, part_height = split_image(original_img_data, num_parts)
callback_queue = f"{file.filename}_callback"
# Declare callback queue
connection = pika.BlockingConnection(pika.ConnectionParameters('<rabbit-mq-server-public-ip'))
channel = connection.channel()
channel.queue_declare(queue=callback_queue)
connection.close()
for i, part_data in enumerate(parts):
publish_task(part_data, file.filename, i, operation, callback_queue)
os.remove(temp_file.name)
# Wait for completion notifications
def on_completion(ch, method, properties, body):
nonlocal num_parts_processed
num_parts_processed += 1
print(f"Part {num_parts_processed} received")
if num_parts_processed == num_parts:
merged_filename = merge_parts(file.filename, num_parts, width, height, part_height)
processed_file_url = f'https://{BUCKET_NAME_PROCESSED}.s3.amazonaws.com/{merged_filename}'
ch.stop_consuming()
response_queue.put(processed_file_url)
import queue
response_queue = queue.Queue()
num_parts_processed = 0
connection = pika.BlockingConnection(pika.ConnectionParameters('<rabbit-mq-server-public-ip'))
channel = connection.channel()
channel.basic_consume(queue=callback_queue, on_message_callback=on_completion, auto_ack=True)
channel.start_consuming()
processed_file_url = response_queue.get()
return jsonify({'message': 'File processed and uploaded successfully', 'processed_file': processed_file_url}), 200
else:
return jsonify({'error': 'Invalid file type'}), 400
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
|