1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
import os
from flask import Flask, request, jsonify
from flask_cors import CORS
import boto3
import cv2
import tempfile
import numpy as np
app = Flask(__name__)
CORS(app)
# Configure AWS S3
s3 = boto3.client('s3')
BUCKET_NAME_ORIGINAL = "original-images-rapid-macaw"
BUCKET_NAME_PROCESSED = "processed-images-rapid-macaw"
@app.route('/upload', methods=['POST'])
def upload_file():
if 'image' not in request.files:
return jsonify({'error': 'No file provided'}), 400
file = request.files['image']
operation = request.form.get('operation', 'edge_detection') # Default to edge detection
if file and allowed_file(file.filename):
# Save the file temporarily
temp_file = tempfile.NamedTemporaryFile(delete=False)
file.save(temp_file.name)
# Upload to S3 original bucket
with open(temp_file.name, "rb") as img_data:
s3.put_object(Bucket=BUCKET_NAME_ORIGINAL, Key=file.filename, Body=img_data, ContentType="image/png")
# Fetch the image from the original bucket
original_img_obj = s3.get_object(Bucket=BUCKET_NAME_ORIGINAL, Key=file.filename)
original_img_data = original_img_obj['Body'].read()
# Process the image
processed_image_path = process_image(original_img_data, operation)
# Upload processed image to S3 processed bucket
processed_filename = f"processed_{file.filename}"
with open(processed_image_path, "rb") as processed_img_data:
s3.put_object(Bucket=BUCKET_NAME_PROCESSED, Key=processed_filename, Body=processed_img_data, ContentType="image/png")
# Clean up temporary files
os.remove(temp_file.name)
os.remove(processed_image_path)
processed_file_url = f'https://{BUCKET_NAME_PROCESSED}.s3.amazonaws.com/{processed_filename}'
return jsonify({'message': 'File processed and uploaded successfully', 'processed_file': processed_file_url}), 200
else:
return jsonify({'error': 'Invalid file type'}), 400
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'png', 'jpg', 'jpeg'}
def process_image(image_data, operation):
# Convert image data to numpy array
nparr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
processed_img = img
if operation == 'edge_detection':
processed_img = cv2.Canny(img, 100, 200)
elif operation == 'color_inversion':
processed_img = cv2.bitwise_not(img)
# Save processed image to a temporary path
output_path = os.path.join(tempfile.gettempdir(), f'processed_image.png')
cv2.imwrite(output_path, processed_img)
return output_path
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)
|