summaryrefslogtreecommitdiff
path: root/2022/Rust/src/day11.rs
blob: d0c16de41918abdf48f66ce79cb9cce2e2d11092 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use std::{collections::VecDeque, str::FromStr, string::ParseError};

#[derive(Debug, Clone, Copy)]
enum Op {
    Add(i64),
    Prod(i64),
    Square,
}

#[derive(Debug, Clone)]
struct Monkey {
    starting_items: VecDeque<i64>,
    inspected_items: i64,
    operation: Op,
    test: i64,
    monkey_true: i64,
    monkey_false: i64,
}

fn parse_items(line: &str) -> String {
    line.chars().skip_while(|&ch| ch != ':').skip(2).collect()
}

fn get_last_token(line: &str) -> i64 {
    line.split(" ")
        .last()
        .unwrap()
        .parse::<i64>()
        .expect("Should be parasble to i64")
}

impl FromStr for Monkey {
    type Err = ParseError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let lines: Vec<_> = s.lines().collect();
        let items: VecDeque<i64> = parse_items(lines[1])
            .split(", ")
            .map(|x| x.parse::<i64>().expect("Should be parsable to i64"))
            .collect();
        let line_2: Vec<_> = lines[2].split(" ").collect();
        let v: Vec<_> = line_2.iter().rev().take(2).collect();
        let op = {
            match *v[0] {
                "old" => Op::Square,
                _ => match *v[1] {
                    "+" => Op::Add(v[0].parse::<i64>().unwrap()),
                    "*" => Op::Prod(v[0].parse::<i64>().unwrap()),
                    _ => unreachable!(),
                },
            }
        };
        let test = get_last_token(lines[3]);
        let monkey_true = get_last_token(lines[4]);
        let monkey_false = get_last_token(lines[5]);
        Ok(Monkey {
            starting_items: items,
            inspected_items: 0,
            operation: op,
            test,
            monkey_true,
            monkey_false,
        })
    }
}

fn solve_part_one(data: &str) -> i64 {
    let monkeys_input: Vec<_> = data.split("\n\n").collect();
    let mut monkeys: Vec<_> = monkeys_input
        .iter()
        .map(|monkey| Monkey::from_str(monkey).unwrap())
        .collect();

    for _ in 0..20 {
        for i in 0..monkeys.len() {
            while !monkeys[i].starting_items.is_empty() {
                use Op::*;
                monkeys[i].inspected_items += 1;
                let mut worry = monkeys[i].starting_items[0];
                match monkeys[i].operation {
                    Add(x) => worry += x,
                    Prod(x) => worry *= x,
                    Square => worry *= worry,
                };
                worry /= 3;
                let monkey_truth = monkeys[i].monkey_true as usize;
                let monkey_false = monkeys[i].monkey_false as usize;
                match worry % monkeys[i].test == 0 {
                    true => monkeys[monkey_truth].starting_items.push_back(worry),
                    false => monkeys[monkey_false].starting_items.push_back(worry),
                }
                monkeys[i].starting_items.pop_front();
            }
        }
    }
    let mut inspected_items: Vec<_> = monkeys.iter().map(|x| x.inspected_items).collect();
    inspected_items.sort();
    inspected_items.reverse();
    inspected_items.iter().take(2).product()
}

fn solve_part_two(data: &str) -> i64 {
    let monkeys_input: Vec<_> = data.split("\n\n").collect();
    let mut monkeys: Vec<_> = monkeys_input
        .iter()
        .map(|monkey| Monkey::from_str(monkey).unwrap())
        .collect();

    for _ in 0..10000 {
        for i in 0..monkeys.len() {
            let divisors_product: i64 = monkeys.iter().map(|x| x.test).product();
            while !monkeys[i].starting_items.is_empty() {
                use Op::*;
                monkeys[i].inspected_items += 1;
                let mut worry = monkeys[i].starting_items[0];
                worry %= divisors_product;
                match monkeys[i].operation {
                    Add(x) => worry = worry + x,
                    Prod(x) => worry = worry * x,
                    Square => worry = worry * worry,
                };
                let monkey_truth = monkeys[i].monkey_true as usize;
                let monkey_false = monkeys[i].monkey_false as usize;
                match worry % monkeys[i].test == 0 {
                    true => monkeys[monkey_truth].starting_items.push_back(worry),
                    false => monkeys[monkey_false].starting_items.push_back(worry),
                }
                monkeys[i].starting_items.pop_front();
            }
        }
    }
    let mut inspected_items: Vec<_> = monkeys
        .iter()
        .map(|x| x.inspected_items)
        .collect::<Vec<_>>();
    inspected_items.sort();
    inspected_items.reverse();
    inspected_items.iter().take(2).product()
}

fn main() {
    let test = include_str!("../input/day11.test");
    let prod = include_str!("../input/day11.prod");
    println!("part1: test {:?}", solve_part_one(test));
    println!("part1: prod {:?}", solve_part_one(prod));
    println!("part2: test {:?}", solve_part_two(test));
    println!("part2: prod {:?}", solve_part_two(prod));
}